
Lecture 6 Slide 1PYKC 29 Oct 2024 EIE2 Instruction Architectures & Compilers

Lecture 6
Instruction Set Architecture

(RISC-V ISA)

Peter Cheung
Imperial College London

URL: www.ee.imperial.ac.uk/pcheung/teaching/EE2_CAS/
E-mail: p.cheung@imperial.ac.uk

Lecture 6 Slide 2PYKC 29 Oct 2024 EIE2 Instruction Architectures & Compilers

RISC-V

u Developed by Krste Asanovic, David Patterson and
colleagues at UC Berkeley in 2010

! First widely accepted open-source computer architecture
! Underlying design principles:

1. Simplicity favours regularity
2. Make the common case fast
3. Smaller is faster
4. Good design demands good compromises

Lecture 6 Slide 3PYKC 29 Oct 2024 EIE2 Instruction Architectures & Compilers

Design Principles

H&H p301-303

Principle 1: Simplicity favors regularity
• Consistent instruction format
• Same number of operands (two sources and one destination)
• Easier to encode and handle in hardware

Principle 2: Make the common case fast
• RISC-V includes only simple, commonly used instructions
• Hardware to decode and execute instructions can be simple, small, and fast
• More complex instructions (that are less common) performed using multiple simple

instructions
• RISC-V is a reduced instruction set computer (RISC), with a small number of simple

instructions
• Other architectures, such as Intel’s x86, are complex instruction set computers (CISC)

Principle 3: Smaller is Faster

Lecture 6 Slide 4PYKC 29 Oct 2024 EIE2 Instruction Architectures & Compilers

Instructions: Addition & Subtraction

C Code
a = b + c;
a = b - c;

RISC-V assembly code
add a, b, c
sub a, b, c

• Add/sub: mnemonic indicates operation to perform
• b, c: source operands (on which the operation is
 performed)
• a: destination operand (to which the result is
 written)

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

More complex code is handled by multiple RISC-V instructions.
C Code
a = b + c - d;

RISC-V assembly code
add t, b, c # t = b + c
sub a, t, d # a = t - d

H&H p303

Lecture 6 Slide 5PYKC 29 Oct 2024 EIE2 Instruction Architectures & Compilers

RISC-V Operands

• Operand location: physical location in computer
– Registers
– Memory
– Constants (also called immediates)

• RISC-V has 32 32-bit registers
• Registers are faster than memory
• RISC-V called “32-bit architecture” because it operates on

32-bit data

H&H p304

Lecture 6 Slide 6PYKC 29 Oct 2024 EIE2 Instruction Architectures & Compilers

32-bit RISC-V Instruction Types

Lecture 6 Slide 7PYKC 29 Oct 2024 EIE2 Instruction Architectures & Compilers

RISC-V Registers

Name Register Number Usage
zero x0 Constant value 0
ra x1 Return address
sp x2 Stack pointer
gp x3 Global pointer
tp x4 Thread pointer
t0-2 x5-7 Temporaries
s0/fp x8 Saved register / Frame pointer
s1 x9 Saved register
a0-1 x10-11 Function arguments / return values
a2-7 x12-17 Function arguments
s2-11 x18-27 Saved registers
t3-6 x28-31 Temporaries

H&H p305

Lecture 6 Slide 8PYKC 29 Oct 2024 EIE2 Instruction Architectures & Compilers

RISC-V operand from Registers

Name Register Number Usage
s0/fp x8 Saved register / Frame pointer
s1 x9 Saved register
s2-11 x18-27 Saved registers

C Code

a = b + c;

a = b + 6;

RISC-V assembly code
s0 = a, s1 = b, s2 = c
add s0, s1, s2

s0 = a, s1 = b
addi s0, s1, 6

H&H p305

Lecture 6 Slide 9PYKC 29 Oct 2024 EIE2 Instruction Architectures & Compilers

RISC-V operands from memory

• Each 32-bit data word has a unique address

RISC-V uses byte-addressable memory (i.e. byte has a unique
address), so each 32-bit word uses 4 byte addresses

Word Address Data

00000003

00000002

00000001

00000000

width = 4 bytes

4 0 F 3 0 7 8 8

0 1 E E 2 8 4 2

F 2 F 1 A C 0 7

A B C D E F 7 8

C D 1 9 A 6 5 B00000004

Word 3
Word 2
Word 1
Word 0

Word 4

Word Number

H&H p307

Lecture 6 Slide 10PYKC 29 Oct 2024 EIE2 Instruction Architectures & Compilers

RISC-V Byte-addressable Memory

• Each data byte has a unique address
• Load/store words or single bytes: load byte (lb) and store

byte (sb)
• 32-bit word = 4 bytes, so word address increments by 4

Word Address Data

0000000C

00000008

00000004

00000000

width = 4 bytes

4 0 F 3 0 7 8 8

0 1 E E 2 8 4 2

F 2 F 1 A C 0 7

A B C D E F 7 8

Word 3
Word 2
Word 1
Word 0

Byte Address

MSB

F E D C

B A 9 8

7 6 5 4

3 2 1 0

C D 1 9 A 6 5 B13 12 11 10 00000010 Word 4

LSB

Word Number

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

Lecture 6 Slide 11PYKC 29 Oct 2024 EIE2 Instruction Architectures & Compilers

Reading Byte-Addressable Memory

• Example: Load a word of data at memory address 8 into s3.
• s3 holds the value 0x1EE2842 after load

RISC-V assembly code
lw s3, 8(zero) # read word at address 8 into s3

Word Address Data

0000000C

00000008

00000004

00000000

width = 4 bytes

4 0 F 3 0 7 8 8

0 1 E E 2 8 4 2

F 2 F 1 A C 0 7

A B C D E F 7 8

Word 3
Word 2
Word 1
Word 0

Byte Address

MSB

F E D C

B A 9 8

7 6 5 4

3 2 1 0

C D 1 9 A 6 5 B13 12 11 10 00000010 Word 4

LSB

Word Number

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

Lecture 6 Slide 12PYKC 29 Oct 2024 EIE2 Instruction Architectures & Compilers

Writing Byte-Addressable Memory

• Example: store the value held in t7 into memory address 0x10 (16)
– if t7 holds the value 0xAABBCCDD, then after the sw completes,

word 4 (at address 0x10) in memory will contain that value

RISC-V assembly code

sw t7, 0x10(zero) # write t7 into address 16

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

Lecture 6 Slide 13PYKC 29 Oct 2024 EIE2 Instruction Architectures & Compilers

RISC-V: Operands from Constants

• 12-bit signed constants (immediates) using addi:

• Form 32-bit constant using sign extension

Any immediate that needs more than 12 bits cannot
use this method.

C Code
// int is a 32-bit signed word
int a = -372;
int b = a + 6;

RISC-V assembly code
s0 = a, s1 = b
addi s0, zero, -372
addi s1, s0, 6

H&H p306

12’hE8B

372 = 12’h174 = 12’b0001_0111_0100
-372 = 12’b1110_1000_1100 = 12’hE8B

Lecture 6 Slide 14PYKC 29 Oct 2024 EIE2 Instruction Architectures & Compilers

RISC-V: Operand with 32-bit Constants

• Use load upper immediate (lui) and addi
• lui: puts an immediate in the upper 20 bits of destination register

and 0’s in lower 12 bits

Remember that addi sign-extends its 12-bit immediate constant

C Code

int a = 0xFEDC8765;

RISC-V assembly code
s0 = a
lui s0, 0xFEDC8
addi s0, s0, 0x765

H&H p306

Lecture 6 Slide 15PYKC 29 Oct 2024 EIE2 Instruction Architectures & Compilers

RISC-V: 32-bit Constants (bit 11 is 1)

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

• If bit 11 of the constant is 1, increment upper 20 bits by 1 in lui

C Code
int a = 0xFEDC8EAB;

RISC-V assembly code
s0 = a
lui s0, 0xFEDC9 # s0 = 0xFEDC9000
addi s0, s0, -341 # s0 = 0xFEDC9000 + 0xFFFFFEAB

 # = 0xFEDC8EAB

Note: -341 = 0xEAB

Lecture 6 Slide 16PYKC 29 Oct 2024 EIE2 Instruction Architectures & Compilers

RISC-V: Psuedoinstruction

• Load immediate 32-bit word is tedious.
• Pseudoinstruction – Assembler program translate “Load Immediate”

instruction “li” to two real RISC-V instructions: ”lui” and ”addi”
C Code
int a = 0xFEDC8EAB;

RISC-V real instructions
s0 = a
lui s0, 0xFEDC9
addi s0, s0, 0xEAB

Note: -341 = 0xEAB

RISC-V pseudoinstructions
s0 = a
li s0, 0xFEDC8EAB

• RISC-V has many pseudoinstructions (see later lectures)

Lecture 6 Slide 17PYKC 29 Oct 2024 EIE2 Instruction Architectures & Compilers

RISC-V: Addressing Modes

How do we address the operands?
• Register Only
• Immediate
• Base Addressing
• PC-Relative

Register Only
• Operands found in registers

– Example: add s0, t2, t3
– Example: sub t6, s1, 0

Immediate
• 12-bit signed immediate used as an operand

– Example: addi s4, t5, -73
– Example: ori t3, t7, 0xFF

H&H p340

Lecture 6 Slide 18PYKC 29 Oct 2024 EIE2 Instruction Architectures & Compilers

RISC-V: Base + Offset Addressing

Base Addressing
• Loads and Stores
• Address of operand is:

base address + immediate
– Example: lw s4, 72(zero)

• address = 0 + 72

– Example: sw t2, -25(t1)
• address = t1 - 25

Lecture 6 Slide 19PYKC 29 Oct 2024 EIE2 Instruction Architectures & Compilers

RISC-V: PC-relative Addressing

PC-Relative Addressing: branches and jal
 Example:

 Address Instruction
 0x354 L1: addi s1, s1, 1
 0x358 sub t0, t1, s7

 0xEB0 bne s8, s9, L1

The label is (0xEB0-0x354) = 0xB5C (2908) instructions before bne

Lecture 6 Slide 20PYKC 29 Oct 2024 EIE2 Instruction Architectures & Compilers

RISC-V: Instruction coding for Branch offset

Relative offset = -2908

x24, x25,

Lecture 6 Slide 21PYKC 29 Oct 2024 EIE2 Instruction Architectures & Compilers

R-type Instructions: 3 register instructions

Lecture 6 Slide 22PYKC 29 Oct 2024 EIE2 Instruction Architectures & Compilers

I & S-type Instructions: All involve imm constants

Lecture 6 Slide 23PYKC 29 Oct 2024 EIE2 Instruction Architectures & Compilers

B-type Instructions: PC-relative Branches

H&H p311

Lecture 6 Slide 24PYKC 29 Oct 2024 EIE2 Instruction Architectures & Compilers

U & I -type Instructions: Upper & Jump/Link

• We will discuss auipc, jalr and jal instructions in another lecture

Lecture 6 Slide 25PYKC 29 Oct 2024 EIE2 Instruction Architectures & Compilers

RISC-V Arithmetic instructions

Lecture 6 Slide 26PYKC 29 Oct 2024 EIE2 Instruction Architectures & Compilers

RISC-V Logic instructions

Lecture 6 Slide 27PYKC 29 Oct 2024 EIE2 Instruction Architectures & Compilers

RISC-V Load/Store instructions

Lecture 6 Slide 28PYKC 29 Oct 2024 EIE2 Instruction Architectures & Compilers

RISC-V Branch & Jump instructions

Lecture 6 Slide 29PYKC 29 Oct 2024 EIE2 Instruction Architectures & Compilers

RISC-V Psuedoinstructions

